La prévision de l’inflation par la méthode des réseaux de neurones : Le cas de la Tunisie.
Mots-clés :
d’inflation, prévision des séries temporelles, réseaux de neurones artificielsRésumé
L’approche neuronale a occupé l’intérêt d’un grand nombre de chercheurs pour l’analyse et la prévision des séries temporelles dans divers domaines. Dans ce papier, nous étudions la capacité des réseaux de neurones artificiels (RNA) de type « perceptrons multicouches » pour prévoir le taux d’inflation en Tunisie. Nous essayons de trouver une meilleure technique de prévision de l’inflation en comparant les résultats obtenus par les RNA par rapport à ceux fournis par les modèles autorégressifs linéaires (AR) et par le modèle de prévision « naïve ». La comparaison est effectuée sur la base du critère de la racine carrée de l’erreur quadratique moyenne (root-mean-square error : RMSE) et sur le taux d’amélioration de ce dernier (évalué par rapport à la marche aléatoire). Les résultats trouvés ont montré la supériorité des RNA qui permettent de mieux retracer l’évolution de la série et offrent une meilleure performance en termes de pouvoir prédictif du taux d’inflation en Tunisie.
Métriques
Téléchargements
Publiée
Comment citer
Numéro
Rubrique
Licence
Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International.
CC BY-NC-ND 4.0 Creative Commons Attribution-NonCommercial-NoDerivative 4.0 Internal licenses. This license allows you to share, copy, distribute and transmit the work for non-commercial purposes, providing attribution is made to the authors (but not in a way that suggests that he endorses you or your use of the work). In order to access detailed and updated information on the license, please visit: https://creativecommons.org/licenses/by-nc-sa/4.0/