Decisiones en conflicto con la Inteligencia Artificial
Keywords:
Non-Cooperative Games, Rational Choice, EgoismAbstract
Technological advances have made it possible to use artificial intelligence to analyze and solve problems that were previously considered complex. Thanks to the increased computing power, it is now possible to access artificial intelligence tools to develop artistic, productive, economic or recreational activities more efficiently. Therefore, artificial intelligence is increasingly used in decision-making processes. Although advances in artificial intelligence have allowed them to make accurate decisions, the automation of decision-making has raised questions about the ethical and social implications of their depersonalization. This essay analyzes the conflicts that may arise when artificial intelligence totally or partially replaces decision-makers to solve a common problem. Following a game-theoretical approach, we show that the automation of decisions can lead to a Prisoner's Dilemma where social welfare is not the maximum possible. Also, the asymmetric use of these tools puts those who do not use them at risk since artificial intelligence can exploit the information shared with them. Therefore, it is necessary to design algorithms that internalize the social impact and mechanisms that regulate their use.
Metrics
References
Bibliografía
Abdollahzadeh, B. y Gharehchopogh, F.S., (2021) A multi-objective optimization algorithm for
feature selection problems. Engineering with Computers, 38. Available at: https://doi.org/10.1007/
s00366-021-01369-9.
Ashok, M., Madan, R., Joha, A. and Sivarajah, U., (2022). ‘ Ethical framework for Artificial Intelligence
and Digital technologies’. International Journal of Information Management, 62(1),
p.102433. Available at: https://doi.org/10.1016/j.ijinfomgt.2021.102433.
Barfuss, W. and Meylahn, J.M., (2023) Intrinsic fluctuations of reinforcement learning promote
cooperation. Scientific Reports, 13(1). Available at: https://doi.org/10.1038/s41598-023-27672-
Beckenkamp, M., (2006) ‘ A game-theoretic taxonomy of social dilemmas’. Central European
Journal of Operations Research, 14(3), pp.337–353. Available at: https://doi.org/10.1007/s10100-
-0008-5.
Bonnefon, J.-F., Shariff, A. and Rahwan, I., (2016) ‘ The social dilemma of autonomous vehicles’.
Science, 352(6293), pp.1573–1576. Available at: https://doi.org/10.1126/science.aaf2654.
Chai, J. and Ngai, E.W.T., (2020) ‘Decision-making techniques in supplier selection: Recent accomplishments
and what lies ahea’d. Expert Systems with Applications, 140, p.112903. Available
at: https://doi.org/10.1016/j.eswa.2019.112903.
Chander, B., Pal, S., De, D. and Buyya, R., (2022) Artificial Intelligence-based Internet of Things
for Industry 5.0. In: S. Pal, D. De and R. Buyya, eds. Artificial Intelligence-based Internet of
Things Systems. [online] Springer. Available at: https://link.springer.com/book/10.1007/978-3-
-87059-1 [Accessed 28 Jan. 2025].
Crandall, J.W., Oudah, M., Tennom, I., Ishowo-Oloko, F., Abdallah, S., Bonnefon, J.-F., Cebrian,
M., Shariff, A., Goodrich, M.A. and Rahwan, I., (2018) ‘Cooperating with Machine’ Nature Communications,
(1). Available at: https://doi.org/10.1038/s41467-017-02597-8.
Dafoe, A., Bachrach, Y., Hadfield, G., Horvitz, E., Larson, K. y Graepel, T., (2021) ‘ Cooperative
AI: machines must learn to find common ground‘’. Nature, [online] 593(7857), pp.33–36. Available
at: https://doi.org/10.1038/d41586-021-01170-0.
Damioli, G., Van Roy, V. and Vertesy, D., (2021) ‘ The impact of artificial intelligence on labor
productivit’, Eurasian Business Review, [online] 11(1), pp.1–25. Available at: https://doi.
org/10.1007/s40821-020-00172-8.
Duan, Y., Edwards, J.S. y Dwivedi, Y.K., (2019) ‘ Artificial Intelligence for Decision Making
in the Era of Big Data – evolution Challenges and Research Agenda’. International Journal of
Information Management, 48(1), pp.63–71. Available at: https://doi.org/10.1016/j.ijinfomgt.
01.021.
Feizabadi, J., (2020) ‘ Machine learning demand forecasting and supply chain performanc’, International
Journal of Logistics Research and Applications, 25(2), pp.1–24. Available at: https://doi.
org/10.1080/13675567.2020.1803246.
Hassani, H., Silva, E.S., Unger, S., TajMazinani, M. y Feely, S.M., (2020) ‘Artificial Intelligence
(AI) or Intelligence Augmentation (IA): What Is the Future?’ AI, [online] 1(2), pp.143–155.
Available at: https://www.mdpi.com/2673-2688/1/2/8.
Hazra, T., Anjaria, K., Bajpai, A. y Kimari, A., (2024) Noncooperative Game Theory. In: Applications
of Game Theory in Deep Learning, [online] Springer, pp.23–43. Available at: https://link.
springer.com/book/10.1007/978-3-031-54653-2.
Joyce, K., Smith-Doerr, L., Alegria, S., Bell, S., Cruz, T., Hoffman, S.G., Noble, S.U. y Shestakofsky,
B., (2021) ‘Toward a Sociology of Artificial Intelligence: A Call for Research on Inequalities
and Structural Change’. Socius: Sociological Research for a Dynamic World, 7, pp.1–11. Available
at: https://doi.org/10.1177/2378023121999581.
Li, C., Chen, Y. and Shang, Y., (2021) ‘A review of industrial big data for decision making in intelligent
manufacturing’, Engineering Science and Technology, an International Journal, [online]
Available at: https://www.sciencedirect.com/science/article/pii/S2215098621001336.
Lohani, F., Rahman, M. y Shaturaev, J., (2023) The Impact of Artificial Intelligence on Economic
Patterns, 118316, pp.1–13.
Lutz, C., (2019) ‘Digital inequalities in the age of artificial intelligence and big data’, Human
Behavior and Emerging Technologies, 1(2), pp.141–148. Available at: https://doi.org/10.1002/
hbe2.140.
March, C., (2021) ‘Strategic interactions between humans and artificial intelligence: Lessons
from experiments with computer players’, Journal of Economic Psychology, 87, p.102426. Available
at: https://doi.org/10.1016/j.joep.2021.102426.
Memarian, B. y Doleck, T., (2023) ‘Fairness, Accountability, Transparency, and Ethics (FATE)
in Artificial Intelligence (AI) and higher education: A systematic revie’, Computers and Education:
Artificial Intelligence, [online] 5(5), p.100152. Available at: https://doi.org/10.1016/j.
caeai.2023.100152.
Muggleton, S., (2014) ‘ Alan Turing and the development of Artificial Intelligence’, AI Communications,
(1), pp.3–10.
Perc, M., Ozer, M. y Hojnik, J. (2019) 'Social and juristic challenges of artificial intelligence'.
Palgrave Communications, [online] 5(1). Disponible en: https://doi.org/10.1057/s41599-019-
-x
Ramos, M.E., Garza-Rodríguez, J. y Gibaja-Romero, D.E. (2022) 'Automation of employment in
the presence of industry 4.0: The case of Mexico'. Technology in Society, 68, p.101837. Disponible
en: https://doi.org/10.1016/j.techsoc.2021.101837
Strümke, I., Slavkovik, M. y Madai, V.I. (2021) 'The social dilemma in artificial intelligence development
and why we have to solve it'. AI and Ethics, 2. Disponible en: https://doi.org/10.1007/
s43681-021-00120-w
Suleimenov, I.E., Vitulyova, Y.S., Bakirov, A.S. y Gabrielyan, O.A. (2020) 'Artificial Intelligence'.
Proceedings of the 2020 6th International Conference on Computer and Technology Applications. Disponible en: https://doi.org/10.1145/3397125.3397141
Sullivan, Y.W. y Fosso Wamba, S. (2022) 'Moral Judgments in the Age of Artificial Intelligence'.
Journal of Business Ethics, 178. Disponible en: https://doi.org/10.1007/s10551-022-05053-w
Tirole, J. (2017) 'Digital economies: the challenges for society'. En: Economics for the common
good. Princeton University Press, pp.401–429.
Vite Cristóbal, R. (n.d.) 'La racionalidad limitada y la racionalidad de procedimiento, algunas
implicaciones para la economía'. [online] Disponible en: https://ru.ceiich.unam.mx/bitstream/
/3238/1/Actas_economia_web_Cap1_La_racionalidad_limitada.pdf [Accedido
Ene. 2025].
Zhang, Z., Chen, Z. y Xu, L. (2022) 'Artificial intelligence and moral dilemmas: Perception of
ethical decision-making in AI'. Journal of Experimental Social Psychology, 101, p.104327. Disponible
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-ND 4.0 Creative Commons Attribution-NonCommercial-NoDerivative 4.0 Internal licenses. This license allows you to share, copy, distribute and transmit the work for non-commercial purposes, providing attribution is made to the authors (but not in a way that suggests that he endorses you or your use of the work). In order to access detailed and updated information on the license, please visit: https://creativecommons.org/licenses/by-nc-sa/4.0/